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LE'lTER TO THE EDITOR 

A lower bound for the spin glass order parameter of the 
infinite-ranged Ising spin glass model? 

T Plefka 
Theoretische Festkorperphysik, Institut fur Festkorperphysik, Technische Hochschule 
Darmstadt, D-6100 Darmstadt, West Germany 

Received 5 October 1981 

Abstract. A lower bound for the order parameter of the SK model results from the 
convergence condition of the TAP equations. The (slightly modified) TAP solution is 
compatible with this bound. Other published solutions can be excluded. 

A satisfactory mean-field theory of spin glasses has not appeared. The simplest 
model which is expected to show such a behaviour is the model of Sherrington and 
Kirkpatrick (1975, referred to hereafter as SK) for N Ising spins (Si =*l) 
interacting via 

with infinite-range exchange interactions. The interactions are independent, but 
equally distributed according to Gaussian distributions with (in the simplest case) zero 
means and with standard deviations of JN-lJ2. 

It is widely accepted that the best approach to the solution of the SK model is the 
treatment of Thouless et a1 (1977, referred to hereafter as TAP). According to this 
theory the external fields hf" can be obtained from 

where p-' = kT and where the local magnetisation is denoted by mi. 
Equation (2) strongly suggests that the external fields are a power expansion up 

to the second order in the exchange couplings. The author (Plefka 1982) has shown 
that this is indeed the case and has given the convergence condition for the TAP 
equations 

where 

1 
qy =-E my. 

N i  (4) 
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The condition (3) was obtained by an investigation of the singularities of the susceptibil- 
ity matrix x,,. The instability (pJ)-' = 2(q2 - q4) results from the term -2pJtm,m, in 
x i 1  (calculated from (2) by ah:"/am,) while the other instability corresponds to that 
found in other treatments (de Almeida and Thouless 1978, Sommers 1978). 

It is the aim of this note to present the lower bound for the spin glass order 
parameter (Edwards and Anderson 1975) resulting from condition (3) and investigate 
whether the published 'solutions' of the SK model are compatible with this result. 

To find this bound let us consider the RHS of condition (3) and let q2 be fixed but 
arbitrary. Then the RHS is a function of q4 which will be denoted by 

1 - 2q2 fq4 for 3 q 4 2  4q2 - 1 
2(q2 - q4) for 3q4 s 4q2 - 1 f (q4) = { 

As q : s q 4 s q 2  (the upper bound results from q 4 = N - '  Z m: s N - '  X m f  as m? S 1 )  
q 4  is restricted to this interval which is indicated in figure 1 where f(q4) is plotted. 
Depending on the value of q2 the function f(q4) takes the minimal value at the 
endpoint (figure l (a))  or in the interior of the q4 interval (figure l(6)). Denoting the 
minimum of f(q4) by fmin we find 

(6) 
f(q4=4:)=(1 -42)' for O s q 2 s f  

for j s q 2 < 1 .  1 f m i n = {  f(q 4 - 4  - 3 q 2  -f) = g(1-42) 

4' q' 

Figure 1. The function f(q4) defined in ( 5 )  against q4. (a),  q2 < f ;  (b) q2 > f .  

As t 2  >f(q4) 2 f m i n  where t = (@J)-' is the reduced temperature we obtain the lower 
bound for the spin glass order parameter 

This is already the central result of this note and this bound is plotted in figure 2. As 
q2 = 0 (formally leading to the minimum of the TAP free energy) is not permitted for 
t < 1, our result clearly shows that there is a phase transition in the SK model. 

Let us now investigate the main 'solutions' of the SK model for temperatures below 
the critical temperature ( t  s 1). 

The TAP solution was given in the critical region (t = 1) and for low temperatures 
t + 0. For t 6 1 the TAP result q2 = 1 - t is compatible with (7). The temperature 
dependence of the t + 0 TAP solution q2 = 1 - - a t 2  again is compatible with (7). A 
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t 

Figure 2. Permitted values of the order parameter q2 (indicated by the shaded region) in 
the q2 - f plane where f = ( p J ) - ’  is the reduced temperature. 

disagreement is found for the values of a. TAP claim a = 1.665 while our treatment 
gives Q s 1.5. However, using the value of a = 1.5 in the TAP solution, all the results 
of TAP are just slightly modified and still agree-within the error bars-with the results 
of the computer simulation (Kirkpatrick and Sherrington 1978). Besides this fact we 
would like to point out that equation (27) of the TAP paper, being quadratic in a, is 
numerically satisfied for CY = 1.665 and for Q = 1.5. 

The SK solution obtained first with the replica method certainly violates (7) for 
low temperatures, but seems at first sight possible for higher temperatures ($< f < 
1). This is, however, not the case. In the SK solution the internal field is Gaussian 
distributed (Plefka 1976) implying 

With this identification, t 2  C 1 - 242 +q4 holds for the SK solution for all temperatures 
f < 1 (de Almeida and Thouless 1978). This is in contradiction to condition (3) and 
we conclude in agreement with the replica treatment of de Almeida and Thouless 
(1978) that the SK solution must be rejected for all temperatures f < 1 .  

The solution of Sommers (1978) is based on t 2  < 1 - 24, +q4 and thus again is in 
conflict with condition (3) and has therefore to be rejected too. This conclusion is in 
agreement with de Dominicis and Garel (1979) and Bray and Moore (1980) obtained, 
however, from different considerations. 

Summing up, we have presented a lower bound for the spin glass order parameter 
q 2  of the SK model and shown that the TAP solution (slightly modified at low tem- 
peratures) is the only one which is compatible with the convergence condition of the 
TAP equations. It is interesting that the TAP solution and, within the error bars, the 
computer ‘solution’ (Kirkpatrick and Sherrington 1978) for 4 2  coincides with the lower 
bound of 4 2 .  This coincidence has been suspected (and seems to be used in the 
low-temperature region) in the TAP paper and our results support this idea. 

At first sight this coincidence seems to be strange, as in this case the value of 4 4  

is determined by 42 (see equation (6)). This implies restrictions to the distribution of 
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the mi. A lot of 'freedom', however, remains for the distribution of the mi (even 
q4 = 4:, which implies m f  = 42, permits 2N different mi distributions). We can imagine 
that one of these distributions (at least nearly) satisfies the TAP equations (known to 
have many solutions) for the h:" = O  case and gives in addition the minimum of the 
free energy. However, this is only speculation and further investigations are needed 
in this direction. 

The author is grateful to Professor G Sauermann for stimulating discussions. 
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